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LETTER TO THE EDITOR 

Exact calculation of the local height probabilities in the 
body-centred SOS model 

P J Forrester 
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, New York 11794-3840, USA 

Received 12 November 1985 

Abstract. The local height probabilities Pa and the mean square height average (h’) are 
calculated exactly for the smooth phase of the body-centred solid-on-solid model. Near 
criticality Po - K’(-f)’’4 and ( h 2 ) -  K ” ( - t ) - ’ / 2 ,  where t is the deviation from criticality 
parameter and K’, K ”  are constants specified in the text. 

In this letter we calculate the local height probabilities Pa and the mean square height 
average ( h 2 )  for the smooth phase of the body-centred solid-on-solid (BCSOS) model. 
This is done by first using the van Beijeren (1977) mapping of the BCSOS model to the 
six-vertex model. We then note that the recently solved eight-vertex SOS model 
(Andrews et a1 1984, Forrester and Baxter 1985) contains as a special case the 
solid-on-solid interpretation of the six-vertex model. From the expressions obtained 
for the Pa in the eight-vertex SOS model, the Pa for the six-vertex SOS model can then 
be written down immediately. 

We begin with the body-centred cubic(Bcc) Ising model. Each site on the BCC 

lattice 2 has a spin + or - .  Let there be nearest- and next-nearest-neighbour 
interactions as shown in figure 1. 

Let 2 consist of two interlaced simple cubic sublattices 2l and z2. Suppose the 
sites on the outermost layers of 2’ are on 2,. On the top layer of each sublattice fix 
the spins to be - ; on the bottom layer of each sublattice fix the spins to be +. Now 
take the limit J,+oo. Then in each column there will be no - spin below a + spin, 
and the level of the + - interface in each nearest-neighbour columns will differ by 
+1 or -1. (Here we have taken as unity the height difference between nearest neighbours 
and the up direction as positive.) 

To specify the level of the + - interface in each column, take a plane of spins in 
the sublattice SI approximately halfway between the top and bottom planes and 
parallel to those planes. On the boundary of this plane f i x  the spins to be + . Define 
the + - interface thus specified in the outermost columns to occur at height 0. We 
measure all other heights of the + - interface as distances above or below this reference 
level. 

To unambiguously specify the ground state of this model let us fix the spins on 
the boundary of the plane immediately above the reference plane to be +. These spins 
all lie on -Y2. The interface thus specified on the outermost columns of this plane 
occur at height 1. Note that since the level of the interface in each nearest-neighbour 
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Figure 1. An elementary cube of the body-centred cubic lattice. The spin on the centre 
site is coupled to the spins on the surrounding cube (nearest neighbours) by the coupling 
-Jo. The spins on the surrounding cube are coupled to each other (next-nearest neighbours) 
by the couplings -J , ,  - J , ,  - J ,  in the x, y and z directions respectively. 

column must differ by 1, heights on TI are even integers, while the heights on Lf2 are 
odd. 

The height above the reference plane of the + - interface in each column specifies 
a configuration of the BCSOS model. Thus the BCSOS model is defined on a square 
lattice (rotated 45”), at each site there being an integer height with nearest-neighbour 
heights differing by 1 (see figure 2). Notice that the lattice can be decomposed into 
even and odd sublattices (corresponding to Lfl and Lf2 of the original BCC lattice) 
which must contain even and odd heights respectively. 

There are six allowed face configurations, which we list in figure 3. We associate 
a (normalised) energy of the interaction between the four nearest-neighbour columns 
to each allowed face configuration. The face weights are 

a = W( 1, I + 111 - 1, I )  = W( I ,  I - I l l+ 1, I )  = exp(-2JY/k,T) 

b = W (  I+ 1, Ill, I - 1) = W (  I - 1,111, I + 1) = exp( - 2 J , / k ,  T )  

c =  W ( l + l , I I I , I + l ) =  W ( I - l , I I I , I - l ) = l .  
(1) 

Here the weight W (  I,, 41 I,, I , )  corresponds to the face with surrounding sites i, j ,  n, m 
ordered anticlockwise starting from the left. 

As observed by van Beijeren (1977) each of these configurations can be transformed 
into a six-vertex configuration by drawing an arrow outward if the height increases as 
you move clockwise around a face, and inward otherwise (see figure 3). In the 
symmetrical case J, = J,, from figure 3 and (1) we see that the allowed energies 
correspond to the F model (Baxter 1982, p 129). 

At low temperatures the F model is in an ordered antiferromagnetic phase. In the 
BCSOS model this corresponds to a flat phase in which the probability of a site deep 
within the lattice having height a (a  any integer) is non-zero (provided of course a is 
even (odd) on the even (odd) sublattice). The use of ‘a’ here to denote height should 
not be confused with the ‘a ’  in (1) which denotes the weight. 
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Figure 2. A typical configuration of the BCSOS model with boundary conditions as specified 
in the text. 

0 b 
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Figure 3. The six allowed configurations of heights round a face of the lattice, and the 
corresponding vertex configurations. 

The local height probability is defined as 

where the weight function W is given by ( l ) ,  the product is over all faces ( i , j ,  n, m )  
of the square lattice, and the sum is over all allowed height configurations. For 
definiteness, the site with height 1 is taken to be the centre of the lattice, but any site 
deep within the lattice will do. With the square lattice rotated 45", the outer heights 
are fixed at 0, and the second outer heights at 1 (recall figure 2 ) .  

Andrews et a1 (1984) have evaluated the Pa for an infinite sequence of SOS models 
(the so called eight-vertex SOS model). In that work the weight function W was given 
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by (equation (A37)) 

a'= W ( I , I + l / l - l , l ) =  W(I,l-l1I+l,I)=vw"*E(xw-') 

p'=  W(I+l ,  Ill, 1 - 1 ) =  W(1-1, Ill, I + l ) =  v [ x E ( x ' - ' ) E ( x ' + ' ) / E ' ( x ' ) w ] ' / Z E ( w )  

y/ = W(l+ 1, Ill, 1 + 1 )  = v E ( x ) E ( x ' w ) / E ( x ' )  

S I =  W(I-1,111, I - l ) =  v E ( x ) E ( x ' / w ) / E ( x ' )  

E ( x )  3 E ( x ,  y )  = fl (1 - y " - ' X ) (  1 - y " X - ' ) (  1 - y " )  

(3) 

where 
0 2  

n = l  

Here we have not written some factors in the weights which do not alter the P, (see 
Forrester and Baxter 1985, equation (1.4.2)). The heights are restricted to lie in the 
interval 1 d li S r - 1,  and heights on adjacent sites of the square lattice must differ by 
unity. Consider regime 111 of this model so that w " ' < x <  1 .  Now take the limits 
r + m ,  l+oo with x, w and v fixed in the weights (3). Writing 

w = exp[ - ( A  + U)] v = $ y  eh ( 6 )  x = exp( -2A ) 

we obtain from (3) and (4) 

ar + p sinh[i(A - U)] 

P I  + p sinh[i( A + U)] (7 )  

yr, 6r + p sinh(A). 

This is precisely the parametrised form of the six-vertex weights a, b, c respectively 
(Baxter 1982, equation (8.9.7)). By comparing (7) and ( 1 )  we see that in the symmetrical 
case J, = Jy we must take 

p = l/sinh(A) 

u = o  (8) 
sinh(A/2)/sinh(A) = exp( -2J,/k, T ) .  

Thus regime 111 of the eight-vertex SOS model reduces to the BCSOS model in the 
limits r + m ,  Z+a. In this regime the local height probabilities P,, were calculated to 
be 

( x Q ' ,  Y ) A ( X ) / [ E (  - x, X 4 ) E ( X b ,  Y / X ) I  (9) 

, 9 1 (10) 

p,, = X ( 1 / 2 ) [ ~ ' ( Q ' - l ) + b ( b + L ) I E  

A ( ~ )  = X - ~ ' b ~ [ _ X 2 ( r - 2 ) ( r - ~ ' ) + Z r b  X 4 r ( r - 2 ) ]  - X ~ ' b ~ [  - X 2 ( r - 2 ) ( r + ~ ' ) + 2 r b  X 4 r ( r - 2 )  

where the boundary heights were fixed at b, b + 1 .  

BCSOS model 
From (9), by taking the limits r, a', b + 00, a' -  b = a and fixed, we obtain for the 

/ E ( - x ,  x"). ( 1 1 )  p, = x ( 1 / 2 ) ( Q 2 - Q )  
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If a is on the odd (even) sublattice, a must be odd (even). The mean square height 
average is 

m 

( h 2 ) E f  a2Pa 
a = - a  

(The prefactor of J accounts for the two sublattices.) Note that these results are 
identical to the Pa and ( h 2 )  of a discrete Gaussian model with single site interactions 
only, the Boltzmann weight at each site being x ( ' / ~ ) ( ~ - ' / ~ ) * .  From (6) and (8), x is 
given in terms of the original Boltzmann weights (1) by 

x =${eXp(2Jx/k,T)+[eXp(4Jx/k~T) -.4]'12}. (13) 

Jx/ kBT + flog 2 

As x-, 1 -  the model becomes critical. From (13) this corresponds to 

(14) 

which marks the onset of a rough phase in which the Pa are zero for each a and ( h 2 )  
is infinite. Of particular interest is the singular behaviour of Pa and (h2) as x-, 1- .  

Defining the deviation from criticality parameter by 

t = ( T -  T,)/T, (15) 

log x - (2 log 2)1/21t1'/2 as t+0.  (16) 

with T, specified by (14) we have from (13) 

As x -, 1-, the theta functions exhibit the familiar behaviour (which can be derived by 
using the Poisson summation formula (Baxter 1982, p 468)) 

E (  -x, x4) - ( ~ / 4 l O g  x)"' (17) 
m 

1 a 2 ~ ( ' / 2 ) ( a Z - a 1  - ( 1 / 4 ~ ) (  n/log x ) ~ ' ~ .  
a = l  

Hence from ( 1  l ) ,  (12), (16)-( 18) we have the leading order singular behaviour as t + 0- 

Pa - K'(-t)1/4 

(h2)  - K "/ (- t ) 

where 

K ' =  (2 log 2)'/4(4/.rr)''2 (21) 

K"=5(2 log 2)-'/2. (22) 

It is possible to construct a dynamical theory which well describes the long- 
wavelength, low-frequency behaviour? of the roughening transition (see e.g. Weeks 
1979). In particular, by use of the fluctuation-dissipation theorem, the theory should 
correctly give the leading order singular behaviour of the height-height correlation 
((hi - for large separations of the sites i and j .  

t The following is due essentially to the referee 
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Just below T, the theory predicts 

1 5’ ( ( h i -  h,)’)--lOg 
T* 1 + (’/( Rij)’ 

where 5 denotes the correlation length and R ,  denotes the distance between sites. 
(This can be derived from equations (48) and (49) of Weeks (1979).) However in the 
BCSOS model we must recall that ((hi - /I,)*) is zero unless the sublattice of the sites i 
and j corresponds to the parity of the heights hi and h,. This means that for the BCSOS 

model we must divide the right-hand side of (23) by 2. Remembering this and taking 
R, + CO in (23) we obtain 

2(h2) - (1 / r2 )  log 6. (24) 

5-' - 4 exp( g2/log x). (25) 

For the F model it is known that near T, (Baxter 1982, equation (8.11.24)) 

Substituting (16) for log x we obtain from (25) and (24) the behaviour of (h’) just 
below T, as given by the dynamical theory. The result is in precise agreement with 
the exact result (20) and (22). 

I thank the referee for corrections and useful comments and M E Fisher for corrections 
to the original manuscript. This work was supported by NSF Grant no PHY85-07627. 
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